492 research outputs found

    Creation of Column Flotation Cells of Large Volume Chambers and their Industrial Applications

    Get PDF
    The paper contains the information on the development and commercial use of a new generation of flotation pneumatic cells of large volume chambers. The description of a mechanism of a process technology, cells' design and some results of theoretical research are given

    Trophic effects of sponge feeding within Lake Baikal\u27s littoral zone .2. Sponge abundance, diet, feeding efficiency, and carbon flux

    Get PDF
    Endemic freshwater demosponges in the littoral zone of Lake Baikal, Russia, dominate the benthic biomass, covering 44% of the benthos. We measured in situ sponge abundance and,orating and calculated sponge-mediated Fluxes of picoplankton (plankton \u3c2 mu m) for two common species, Baikalospongia intermedia and Baikalospongia bacillifera. By means of dual-beam how cytometry, we found retention efficiencies ranging from 58 to 99% for four types of picoplankton: heterotrophic bacteria, Synechococcus-type cyanobacteria, autotrophic picoplankton with one chloroplast, and autotrophic picoplankton with two chloroplasts. By using a general model for organism-mediated fluxes, we conservatively estimate that through active suspension feeding, sponges are a sink for 1.97 g C d(-1) m(-1), mostly from procaryotic cell types. Furthermore, grazing by these extensive sponge communities can create a layer of picoplankton-depleted water overlying the benthic community in this unique lake

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ 1-n-Π°Π»ΠΊΡ–Π»ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 3-n-Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 1Π½-Ρ‚Ρ–Ρ”Π½ΠΎ [3,2-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4-Π΄Ρ–ΠΎΠ½Ρ–Π²

    Get PDF
    Two approaches for synthesis of a great variety of 3-N-substituted 1H-thieno[3,2-d]pyrimidine-2,4-diones have been investigated. The first one is based on the interaction of methyl 3-aminothiophene-2-carboxylate with isocyanates, which is a good way for preparation of 3-N-aryl-1H-thieno[3,2-d]pyrimidine-2,4-diones. The key step of the other one, which allows introduction of different alkyl substituents in position 3, is oxidation of 4-oxo-2-thioxo-2,3- dihydrothieno[3,2-d]pyrimidines prepared by interaction of 3-isothiocyanatothiophene-2-carboxylate and the primary aliphatic amines with hydrogen peroxide. Alkylation of the intermediates obtained in both ways resulted in 1-N-alkyl-3-N-substituted 1Н-thieno[3,2-d]pyrimidine-2,4-diones. 1H NMR spectra of the target molecules contain the signals of thiophene cycle protons H-6 (Ξ΄ 8.02-8.18 ppm) and H-7 (Ξ΄ 7.06-7.15 ppm) together with the signal of CH2 groups in position 1 of the heterocyclic system in the range of Ξ΄ 4.70-5.20 ppm. The antimicrobial activity of the compounds synthesized has been investigated by the agar well diffusion method. It has been determined that the compound with phenyl substituents in position 3 and o-methylbenzyl substituent in position 1 is the most active antimicrobial agent. The 1-N-alkyl derivatives of 2,4-dioxo-1,4-dihydro-2H-thieno[3,2-d]pyrimidine-3-yl)propanoic acid benzyl amide appeared to be active against the strains of Staphylococcus aureus and Bacillus subtilis.Π‘Ρ‹Π»ΠΎ исслСдовано Π΄Π²Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ синтСзу ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 3-N-Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 1H-Ρ‚ΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ способны ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ большоС химичСскоС Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅. Богласно ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ ΠΈΠ· Π½ΠΈΡ…, основанному Π½Π° взаимодСйствии ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ эфира 3-Π°ΠΌΠΈΠ½ΠΎΡ‚ΠΈΠΎΡ„Π΅Π½-2-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты с ΠΈΠ·ΠΎΡ†ΠΈΠ°Π½Π°Ρ‚Π°ΠΌΠΈ, Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ 3-N-Π°Ρ€ΠΈΠ» Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Π΅ 1H-Ρ‚ΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½Ρ‹. Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Π΅ Π°Π»ΠΊΠΈΠ»ΡŒΠ½Ρ‹Π΅ замСститСли Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3, основан Π½Π° окислСнии пСроксидом Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° 4-оксо-2-тиоксо-2,3-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΌ взаимодСйствия ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ эфира 3-ΠΈΠ·ΠΎΡ‚ΠΈΠΎΡ†ΠΈΠ°Π½Π°Ρ‚ΠΎΡ‚ΠΈΠΎΡ„Π΅Π½-2-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… алифатичСских Π°ΠΌΠΈΠ½ΠΎΠ². ΠŸΡƒΡ‚Π΅ΠΌ алкилирования ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ синтСзированы 1-N-Π°Π»ΠΊΠΈΠ»-3-N-Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Π΅ 1Н-Ρ‚ΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½Ρ‹. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Ρ‹ 1Н ЯМР ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… соСдинСний содСрТат сигналы ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² Ρ‚ΠΈΠΎΡ„Π΅Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡƒΡ… Π΄ΡƒΠ±Π»Π΅Ρ‚Π½Ρ‹Ρ… сигналов Н-6 (Ξ΄ 8.02-8.18 ΠΌ.Π΄.) ΠΈ Н-7 (Ξ΄ 7.01-7.36 ΠΌ.Π΄.) ΠΈ сигналы ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² CH2 Π³Ρ€ΡƒΠΏΠΏΡ‹ замСститСля Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 1 гСтСроцикличСской систСмы Π² области Ξ΄ 4.50-5.25 ΠΌ.Π΄. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€. УстановлСно, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высоким ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌ дСйствиСм ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ соСдинСниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ содСрТит Ρ„Π΅Π½ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π·Π°ΠΌΠ΅ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΠΈ ΠΎ-ΠΌΠ΅Ρ‚ΠΈΠ»Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ – Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 1 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½Ρ‹Π΅ 1-N-Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ 3-N-Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 1Н-Ρ‚ΠΈΠ΅Π½ΠΎ[3,2-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½ΠΎΠ² оказались Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus ΠΈ Bacillus subtilis.ДослідТСні Π΄Π²Π° ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ Π΄ΠΎ синтСзу ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 3-N-Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 1H-Ρ‚Ρ–Ρ”Π½ΠΎ[3,2-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4-Π΄Ρ–ΠΎΠ½Ρ–Π², які Π·Π΄Π°Ρ‚Π½Ρ– Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΠΈΡ‚ΠΈ Π²Π΅Π»ΠΈΠΊΠ΅ Ρ…Ρ–ΠΌΡ–Ρ‡Π½Π΅ розмаїття. Π—Π³Ρ–Π΄Π½ΠΎ Π· ΠΏΠ΅Ρ€ΡˆΠΈΠΌ Π· Π½ΠΈΡ…, заснованим Π½Π° Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ СстСру 3-Π°ΠΌΡ–Π½ΠΎΡ‚Ρ–ΠΎΡ„Π΅Π½-2-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Π· Ρ–Π·ΠΎΡ†Ρ–Π°Π½Π°Ρ‚Π°ΠΌΠΈ, Π±ΡƒΠ»ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– 3-N-Π°Ρ€ΠΈΠ» Π·Π°ΠΌΡ–Ρ‰Π΅Π½Ρ– 1H-Ρ‚Ρ–Ρ”Π½ΠΎ[3,2-d] ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4-Π΄Ρ–ΠΎΠ½ΠΈ. Π”Ρ€ΡƒΠ³ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄, який Π½Π°Π΄Π°Ρ” ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΠΈ складні Π°Π»ΠΊΡ–Π»ΡŒΠ½Ρ– замісники Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3, заснований Π½Π° окиснСнні Π³Ρ–Π΄Ρ€ΠΎΠ³Π΅Π½Ρƒ пСроксидом 4-оксо-2-тіоксо-2,3-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[3,2-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½Ρ–Π², ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… ΡˆΠ»ΡΡ…ΠΎΠΌ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ СстСру 3-Ρ–Π·ΠΎΡ‚Ρ–ΠΎΡ†Ρ–Π°Π½Π°Ρ‚ΠΎΡ‚Ρ–ΠΎΡ„Π΅Π½-2-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Π· ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΠΌΠΈ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΈΡ… Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π°ΠΌΡ–Π½Ρ–Π². Шляхом алкілування ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π½Π°ΠΏΡ–Π²ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Π±ΡƒΠ»ΠΈ синтСзовані 1-N-Π°Π»ΠΊΡ–Π»-3-N-Π·Π°ΠΌΡ–Ρ‰Π΅Π½Ρ– 1Н-Ρ‚Ρ–Ρ”Π½ΠΎ[3,2-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4-Π΄Ρ–ΠΎΠ½ΠΈ. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€ΠΈ 1Н ЯМР ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… ΠΊΡ–Π½Ρ†Π΅Π²ΠΈΡ… сполук ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ сигнали ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² Ρ‚Ρ–ΠΎΡ„Π΅Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ Ρƒ вигляді Π΄Π²ΠΎΡ… Π΄ΡƒΠ±Π»Π΅Ρ‚Π½ΠΈΡ… сигналів ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² Н-6 (Ξ΄ 8.02-8.18 ΠΌ.Ρ‡.) Ρ– Н-7 (Ξ΄ 7.01-7.36 ΠΌ.Ρ‡.) Ρ‚Π° сигнали ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² CH2 Π³Ρ€ΡƒΠΏΠΈ замісника Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 1 Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΡ— систСми Π² області Ξ΄ 4.50-5.25 ΠΌ.Ρ‡. Антимікробну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€. ВстановлСно, Ρ‰ΠΎ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΡƒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π΄Ρ–ΡŽ Ρ‡ΠΈΠ½ΠΈΡ‚ΡŒ сполука, яка ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Ρ„Π΅Π½Ρ–Π»ΡŒΠ½ΠΈΠΉ замісник Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3 Ρ‚Π° ΠΎ-ΠΌΠ΅Ρ‚ΠΈΠ»Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½ΠΈΠΉ – Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 1 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ. ДослідТСні 1-N-Π°Π»ΠΊΡ–Π»ΠΎΠ²Π°Π½Ρ– ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– 3-N-Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 1Н-Ρ‚Ρ–Ρ”Π½ΠΎ[3,2-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4-Π΄Ρ–ΠΎΠ½Ρ–Π² виявились Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ ΡˆΡ‚Π°ΠΌΡ–Π² Staphylococcus aureus Ρ‚Π° Basillus subtilis

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Π΅Ρ‚ΠΈΠ» 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2-(Π°Π»ΠΊΡ–Π»Ρ‚Ρ–ΠΎ)-4-оксо-3,4-Π΄ΠΈ-Π³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-6-карбоксилатів

    Get PDF
    By alkylation of the products of diethyl 3-methyl-5 {[(methylthio)carbonothioyl]amino}-2,4-thiophenedicarboxylate interactionwith benzylamines the novel derivatives of ethyl 5-methyl-2-(alkylthio)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylates have been obtained. It has been found that the signal of the CH2-group adjacent to the nitrogen atom in position 3 of thieno[2,3-d]pyrimidine system is always observed in the range of 5.35-5.40 ppm, while the position of the signal of methythylene-group connected with the sulfur atom much depends upon the structure of the radical attached to this group. IR-spectra of all the compounds contain the intensive Π‘=О stretching band at 1721-1678 cm-1; the spectra of the compounds with amide function contain bands of stretching N–H of 3280-3263 cm-1, while nitriles have the band of stretching C≑N vibrations near 2250 сm-1. It has been determined that all of the compounds are mostly active against the strain of Candida aibicans fungi. The most resistant microorganism was found to be the strains of Staphylococcus aureus. The only exception is the derivative modified with the thioacetic acid residue in position 2 and unsubstituted benzyl in position 3, which appeared to be highly active against Staphylococcus aureus strain. Amides of thioactetic acid modified in position 3 with 3,4-dichlorobenzyl substituent and thioacetamide substituents in position 2 are active against Pseudomonas aeruginosa, as well as the compound, which contains 3-chlorobenzyl substituent in position 3 and p-chlorobenzotiol substituents in position 2 of thieno[2,3-d]pyrimidine.ΠŸΡƒΡ‚Π΅ΠΌ алкилирования ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² взаимодСйствия диэтил 3-ΠΌΠ΅Ρ‚ΠΈΠ»-5-{[(ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚ΠΈΠΎ)ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΡ‚ΠΈΠΎΠΈΠ»]Π°ΠΌΠΈΠ½ΠΎ}-2,4-тиофСндикарбоксилата с Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ½Π°ΠΌΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ этил 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2-(Π°Π»ΠΊΠΈΠ»Ρ‚ΠΈΠΎ)-4-оксо-3,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-6-карбоксилатов. УстановлСно, Ρ‡Ρ‚ΠΎ Π² спСктрах 1Н ЯМР сигнал Π³Ρ€ΡƒΠΏΠΏΡ‹ БН2, связанной с Π°Ρ‚ΠΎΠΌΠΎΠΌ Π°Π·ΠΎΡ‚Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ систСмы, для всСх ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… соСдинСний находится Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 5,35-5,4 ΠΌ.Π΄., Π² Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ сигнала ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π²ΠΎΠ·Π»Π΅ Π°Ρ‚ΠΎΠΌΠ° сСры Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ зависит ΠΎΡ‚ строСния Ρ€Π°Π΄ΠΈΠΊΠ°Π»Π°, нСпосрСдствСнно связанного с Π½Π΅ΠΉ. Π’ ИК-спСктрах для всСх соСдинСний Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ интСнсивныС полосы Π²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π‘=О 1721-1678 см-1, для соСдинСний с Π°ΠΌΠΈΠ΄Π½Ρ‹ΠΌ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ полосы Π²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ N–H 3280-3263 cΠΌ-1, для Π½ΠΈΡ‚Ρ€ΠΈΠ»ΠΎΠ² Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ полоса Π²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ C≑N ΠΏΡ€ΠΈ 2250 см-1. УстановлСно, Ρ‡Ρ‚ΠΎ всС соСдинСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ рост Π³Ρ€ΠΈΠ±ΠΎΠ² Candida aibicans. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ соСдинСний оказалось Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· этого являСтся соСдинСниС с остатком тиоуксусной кислоты Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2 ΠΈ Π½Π΅Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹ΠΌ Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ замСститСлСм Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ проявило Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΡˆΡ‚Π°ΠΌΠΌΡƒ Staphylococcus aureus. Амиды тиоуксусной кислоты с 3,4-Π΄ΠΈΡ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ замСститСлСм Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΠΈ Ρ‚ΠΈΠΎΠ°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄Π½Ρ‹ΠΌΠΈ замСститСлями Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2 ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Pseudomonas aeruginosa Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ соСдинСниС, содСрТащСС 3-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π·Π°ΠΌΠ΅ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½Π° ΠΈ ΠΏ-Ρ…Π»ΠΎΡ€Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Π·Π°ΠΌΠ΅ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2.Шляхом алкілування ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π΄Ρ–Π΅Ρ‚ΠΈΠ» 3-ΠΌΠ΅Ρ‚ΠΈΠ»-5-{[(ΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚Ρ–ΠΎ)ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΡ‚Ρ–ΠΎΡ—Π»]Π°ΠΌΡ–Π½ΠΎ}-2,4-тіофСндикарбоксилату Π· Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΡ–Π½Π°ΠΌΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π½ΠΎΠ²Ρ– ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– Π΅Ρ‚ΠΈΠ» 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2-(Π°Π»ΠΊΡ–Π»Ρ‚Ρ–ΠΎ)-4-оксо-3,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d] ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-6-карбоксилатів. ВстановлСно, Ρ‰ΠΎ Π² спСктрах 1Н ЯМР сигнал Π³Ρ€ΡƒΠΏΠΈ БН2, з’єднаної Π· Π°Ρ‚ΠΎΠΌΠΎΠΌ НітрогСну Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3 Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½ΠΎΠ²ΠΎΡ— систСми, для усіх ΠΊΡ–Π½Ρ†Π΅Π²ΠΈΡ… сполук Π·Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– 5,35-5,4 ΠΌ.Ρ‡., Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ час полоТСння сигналу ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²ΠΎΡ— Π³Ρ€ΡƒΠΏΠΈ біля Π°Ρ‚ΠΎΠΌΠ° Π‘ΡƒΠ»ΡŒΡ„ΡƒΡ€Ρƒ Π·Π½Π°Ρ‡Π½ΠΎ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Π±ΡƒΠ΄ΠΎΠ²ΠΈ Ρ€Π°Π΄ΠΈΠΊΠ°Π»Ρƒ, Π±Π΅Π·ΠΏΠΎΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ зв’язаного Π· нСю. Π’ Π†Π§-спСктрах для усіх сполук Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΠΌΠΈ Ρ” інтСнсивні смуги Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… коливань Π‘=О 1721-1678 см-1, для сполук Π· Π°ΠΌΡ–Π΄Π½ΠΈΠΌ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ наявні смуги Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… коливань N–H 3280-3263 cΠΌ-1, для Π½Ρ–Ρ‚Ρ€ΠΈΠ»Ρ–Π² ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°Ρ”Ρ‚ΡŒΡΡ смуга Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… коливань C≑N ΠΏΡ€ΠΈ 2250 см-1. ВстановлСно, Ρ‰ΠΎ всі сполуки Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠ΅ ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΡŽΡ‚ΡŒ ріст Π³Ρ€ΠΈΠ±Ρ–Π² Candida aibicans. НаймСнш Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡŽ Π±Ρ–Π»ΡŒΡˆΡ–ΡΡ‚ΡŒ сполук виявилась Π΄ΠΎ ΡˆΡ‚Π°ΠΌΡ–Π² Staphylococcus aureus. Π’ΠΈΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΡΠΌ Ρ” лишС сполука Ρ–Π· залишком Ρ‚Ρ–ΠΎΠΎΡ†Ρ‚ΠΎΠ²ΠΎΡ— кислоти Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 2 Ρ‚Π° Π½Π΅Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΠΌ бСнзильним замісником Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3, яка проявила Π·Π½Π°Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ ΡˆΡ‚Π°ΠΌΡƒ Staphylococcus aureus. Аміди Ρ‚Ρ–ΠΎΠΎΡ†Ρ‚ΠΎΠ²ΠΎΡ— кислоти Π· 3,4-Π΄ΠΈΡ…Π»ΠΎΡ€ΠΎΠ±Π΅Π½Π·ΠΈΠ»ΡŒΠ½ΠΈΠΌ замісником Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3 Ρ‚Π° Ρ‚Ρ–ΠΎΠ°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Π½ΠΈΠΌΠΈ замісниками Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 2 Ρ” Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ Pseudomonas aeruginosa, Ρ‚Π°ΠΊ як Ρ– сполука, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ 3-Ρ…Π»ΠΎΡ€ΠΎΠ±Π΅Π½Π·ΠΈΠ»ΡŒΠ½ΠΈΠΉ замісник Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3 Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½Ρƒ Ρ‚Π° ΠΏ-Ρ…Π»ΠΎΡ€ΠΎΠ±Π΅Π½Π·ΠΎΡ‚Ρ–ΠΎΠ»ΡŒΠ½ΠΈΠΉ замісник Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 2

    Guardianship for Popular Sobriety in Russia at the Beginning of 20th Century: from Wine Monopoly to β€œDry Law”

    Get PDF
    TheΒ article is devoted to theΒ guardianship ofΒ popular sobrietyΒ β€” institutions created by theΒ government ofΒ theΒ Russian Empire at theΒ end ofΒ theΒ 19th century to organize theΒ fight against excessive alcohol consumption at theΒ provincial and district levels. TheΒ study describes theΒ situation with theΒ consumption ofΒ alcoholic beverages in Russia at theΒ turn ofΒ theΒ XIXβ€”XXΒ centuries, provides theΒ main provisions ofΒ theΒ state wine monopoly, introduced in 1895 with theΒ direct participation ofΒ theΒ Minister ofΒ Finance S.Β Yu.Β Witte. Based on theΒ Charter ofΒ Guardianship of People’s Sobriety, theΒ authors describe their powers, composition, and features ofΒ work organization. Based on theΒ analysis ofΒ diverse sources (including unpublished archival sources), theΒ article characterizes theΒ diverse activities ofΒ guardianship in Russia at theΒ beginning ofΒ theΒ 20th century, as well as its assessment by contemporaries. TheΒ conclusion is made about theΒ relatively low efficiency ofΒ theΒ work ofΒ sober institutions due to their bureaucracy and insufficient funding. TheΒ article describes theΒ problem ofΒ reforming theΒ guardianship, which was discussed with varying intensity in theΒ 1900β€”1910s in theΒ Ministry ofΒ Finance, theΒ State Council, public and zemstvo circles. Special attention is paid to theΒ analysis ofΒ theΒ problems faced by theΒ guardianship ofΒ popular sobriety during theΒ First World War after theΒ introduction ofΒ theΒ β€œProhibition”. TheΒ scientific novelty ofΒ theΒ research lies in anΒ attempt to analyze theΒ entire set ofΒ issues related to theΒ activities ofΒ guardianship in theΒ period under review, starting from documents of aΒ legal and office-work nature, statistical materials, periodicals, journalistic and memoir literature

    Hydrodynamical Simulation of Astrophysical Flows: High-Performance GPU Implementation

    Full text link
    We present a new hydrodynamical code GPUPEGAS 2.0 for 3D simulation of astrophysical flows using the GPUs. This code is an extension of GPUPEGAS code developed in 2014 for simulation of interacting galaxies. GPUPEGAS 2.0 is based on the Authors' numerical method of high order of accuracy for smooth solutions with small dissipation of the solution in discontinuities. The high order of accuracy and small dissipation are achieved by using the piecewise-linear representation of the physical variables in each dimension. The Rusanov flux allows one to simply vectorize the solution of the Riemann problem. The code was implemented for the cluster supercomputers NKS-30T (Siberian Supercomputer Center, SB RAS) and Uran (Institute of Mathematics and Mechanics, UrB RAS) using the hybrid MPI+CUDA technology. To avoid the compute capability-specific implementations of reduction routines, the Thrust library was used. The optimal parameters for kernel function were found for the three-dimensional computation grid. The Sedov point blast problem was used as a main test one. The numerical experiment was performed to simulate the hydrodynamics of the type II supernova explosion for the grid size of 2563. A set of experiments was performed to study performance and scalability of the developed code. The performance of 25 GFLOPS was achieved using a single Tesla M2090 GPU. The speedup of 3 times was achieved using a node with 4 GPUs. By using 16 GPUs, 70% scalability was achieved. Β© 2019 IOP Publishing Ltd. All rights reserved.Russian Science Foundation,Β RSF: 18-11-00044The work of Igor Kulikov and Igor Chernykh was supported by Russian Science Foundation (project no. 18-11-00044)
    • …
    corecore